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Abstract. Transductive zero-shot learning (TZSL) aims to minimize
the domain shift between the learned and true distribution of the unseen
classes by allowing access to the unpaired samples from unseen classes.
While many distribution alignment based methods attempt to align both
visual and semantic spaces to train the classifier, their performance is
still limited by confirmation bias. Additionally, bidirectional alignment
approaches are based on the strong assumption that the intrinsic dimen-
sions of visual and semantic spaces are the same, which is rarely true. In
this work, we first highlight the limitations of bidirectional alignment in
terms of intrinsic dimensionality. We then present a pseudo-bidirectional
approach that, without any underlying assumptions on these spaces, uti-
lizes the learned visual-to-attribute mapping to minimize the distribution
shift between learned and true unseen visual feature distributions. We
further utilize an entangled loss between semantic and visual space to
minimize the confirmation or uncertainty bias and improve the adversar-
ial robustness. We, theoretically and empirically, show the performance
gain in addition to the adversarial robustness under the proposed setting.

Keywords: Zero-shot learning · Bias · Adversarial robustness.

1 Introduction

The aim of zero-shot learning is to recognize and classify objects or concepts
for which they have not been explicitly trained. In most of the practical sce-
narios, the computer vision models are required to be trained on a set of large
number of training examples paired with their corresponding labels, known as
seen classes. The trained model are then used to infer the labels for which there
are no available training examples, referred to as target labels. In inductive
zero-shot learning, samples from the target (or unseen) classes are not provided
for training. However, a sufficient number of paired examples are provided for
the seen categories. This approach requires the classifier to learn the relation
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between visual and semantic spaces using the seen classes and transfers this
knowledge to the unseen classes assuming that such relevant knowledge exists.
This knowledge sharing requires annotated data such as vector embedding of
labels, attribute features and so on. However, transfer learning without access
to unseen labels can be quite challenging due to domain shift problem [5]. To
simplify the problem, Transductive zero-shot learning (TZSL) [16,15,6] utilizes
the unlabeled examples of the targeted classes for training. This allows access
to the collective target data distribution without correspondences to ease off the
burden of distribution shift.

Most of the approaches are influenced by generative modelling that intend
to align the distribution of real examples and generated examples followed by
training the classifier on the generated examples. Depending on the discrepancy
in the learned data distribution, the classifier may suffer from confirmation bias,
which means that the classifier is trained on the generated samples assuming
that they are correctly paired to their target labels. Additionally, many pre-
vious graph based approaches model the attribute relation using Word2Vec or
GloVe embeddings but rely on corpora training which may not provide neces-
sary characteristics to distinguish between the classes [21]. Moreover, knowledge
graph based methods [16] also has its own challenges. For example, knowledge
graphs may struggle with handling ambiguous concepts or entities with multiple
senses. Different classes or concepts can share similar or overlapping features,
making it challenging to disambiguate them solely based on the information in
the knowledge graph.

To address these limitations, we propose pseudo-bidirectional alignment that
utilizes expert information to learn bidirectional-like mapping. The contribution
of the proposed work is as follows:

1. We introduce pseudo-bidirectional alignment using Expert guided VAEGAN
that, unlike bidirectional adversarial learning, learns the semantic-to-visual
mapping based on the additional knowledge from an expert model, which is
visual-to-attribute mapping in our case.

2. The proposed model improves the semantic-to-visual mapping by incorpo-
rating knowledge from an expert model to learn distribution shift in a low
intrinsic dimensional space, contributing to a more robust and effective learn-
ing process.

3. A new entangled loss function is introduced for classifier training, by inte-
grating generated visual features and pseudo-labels. This leads to reduction
of confirmation bias and shows its effectiveness in terms of adversarial ro-
bustness and, providing a novel and impactful contribution to the training
process.

4. Both theoretical and experimental evidence were presented, showcasing the
remarkable performance of pseudo-bidirectional alignment. Finally, implicit
robustness is achieved through the proposed approach, contributing to the
model’s resilience in the face of various challenges. The method’s ability
to overcome uncertainty is highlighted, making it a notable and impactful
contribution to the field of Transductive zero-shot learning.
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2 Related Works

2.1 Zero-Shot Learning

Zero-shot learning has garnered a lot of interest in the past few years due to its
practical applications in many vision and language-related problems. Inductive
zero-shot entity recognition has previously been addressed in which most of them
tend to learn semantic to visual space mapping using projection mapping [34].
This approach of transferring knowledge from seen to unseen classes suffers from
domain shift due to non-overlapping distributions of seen and unseen classes.
Subsequently, some works utilize two networks to align the distributions in both
semantic and visual spaces by using generative modelling such as VAE and
GANs. For example, Cycle-WGAN [4] uses a new multi-modal cycle consistency
loss which constrains the optimization problem to generate useful visual features
for the training of classifier. Another method is to exploit the expert knowledge
for domain alignment by leveraging the expertise of a domain expert to constrain
the learning process, and it closely resembles our idea in this work. For example,
Norouzi et al. [17] proposes a convex combination mapping approach for zero-
shot learning. It incorporates expert knowledge in the form of semantic attributes
and enforces a regularization term to constrain the model’s predictions to be a
convex combination of attribute vectors. Since the model is regularized to align
its predictions with the provided attributes, noisy or misleading attributes might
negatively impact the learning process and lead to erroneous predictions. Field-
Guide-Inspired Zero-Shot Learning ([14]) is another interesting approach which
directly involves a human expert to interact with the learner. In this approach,
the learner is first trained on a set of base classes followed by interaction with
an expert annotator to seek minimal guidance on the attributes to classify the
unseen classes. The method may suffer from the knowledge gap between attribute
understandings of humans and the neural net, and it is relatively difficult to
align their knowledge due to variations in the human experts. Nevertheless, the
absence of knowledge of unseen classes serves as the performance bottleneck and
restricts the performance of inductive ZSL.

Contrary to an inductive setting, transductive ZSL allows the learner to
utilize the knowledge of examples from unseen classes without correspondence.
Generative models have been adopted by most of the state-of-the-art as adver-
sarial training allows to align the distribution. Marmoreo et al. [15] proposed the
idea of decoupled feature generation by encapsulating the visual patterns into
structured prior to boost the performance of conditional visual feature synthesis.
It uses DecGAN to capture the distribution of visual features and generate realis-
tic descriptors. The pioneering work in zero-VAE-GAN [6] is the first to attempt
the coupled Variational Autoencoder (VAE) and generative model for this task.
It uses generative methods to synthesize visual features conditioned on semantic
side information and learn a conventional supervised classifier from generated
sample. However, when generative models are trained with seen classes, there
are inherently biased when it comes to generalization to unseen classes.
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Fig. 1: Overall training methodology for proposed Transductive ZSL. Step 1 in-
volves adversarial training of visual-to-attribute mapper (fa) for both seen and
unseen classes. Step 2 utilizes fa from previous step for aligning distributions
of true and generated visual features of unseen labels. In step 3, we utilize the
paired generated feature-label and original feature-pseudolabel to train the clas-
sifier.

2.2 Graph Neural Networks in ZSL

Unlike multi-layer perceptron that has fully connected layers, graph neural nets
learn the node embeddings based on the node strength and its connections to
other nodes of the graph. Similar to self-attention [24,22,23], it is capable of
learning global representations based on the node connections and strengths.
The recent studies [31,9,16] have demonstrated the effectiveness of utilizing the
graph structure in zero shot learning. Xiel et al. [31] proposed a region graph
embedding network to capture the relationships between various parts of the
image using graph convolutions. The graph nodes consist of local regions of the
image and are connected by the edges depending on the pairwise nodes’ similar-
ity. Since the regionwise features of the image may fail to capture the extent of
the relation, it translates to the edges’ strength resulting in misleading interac-
tion between patches. Similarly, the Visual-Semantic Entanglement network in
[9] learns the graph embeddings of visual features and maps it to the semantic
attributes using the knowledge graph. Additionally, it uses a multi-path entan-
gled path network which feeds the visual features from CNN to GCN to learn
the semantic relations resulting in self-consistent regression for graph modelling.
Liu et al. [16] also exploits the knowledge graph through a transformer to learn
class representations by embedding nodes in the knowledge graph. [12] exploits
graph relation for attribute propagation to refine the features in semantic space
based on the information aggregated from the neighbouring nodes. This approach
does not add any constraint to align the learned attribute features and therefore
makes a strong assumption that attribute propagation does not affect the asso-
ciated attribute labels, and thus the label for the propagated attributes is the
same as the original associated label before propagation. While the knowledge
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graph embeddings are useful in natural language-related problems, the semantic
vectors may not be directly applicable to computer vision problems. The limited
semantic coverage of knowledge graph vectors introduces a bias towards certain
classes restricting its ability to generalize for unseen classes. To avoid this lim-
itation, we directly utilize the attribute vectors associated with class labels to
represent the connection between nodes.

3 Limitations of Bidirectional Alignment

We use the idea of Intrinsic dimensionality and Wassertein distance to highlight
the limitation of bidirectional alignment [27].

Theorem 1 (Invariance of domain). If U is an open subset of Rn and f :
U −→ Rn is an injective continuous map, then V = f(U) is an open and f is a
homeomorphism between U and V .

Bi-VAEGAN [27] learns adversarial mapping between visual space and at-
tribute space. However, visual features comprise of additional details beyond the
attribute features and therefore, the Intrinsic dimension of visual feature space
(IDv) is relatively larger than that of attribute space (IDa). This limitation may
negatively impact the diversity of learned samples in visual space.

Proposition 1. Let x ∼ P and x′ ∼ P ′
be the samples from true and learned

distributions, respectively such that diffrence between the intrinsic dimension of
P ′

and P is δ. If D∗ is the intrinsic dimension of P, then normalized Wasserstein
distance, conditioned on [0, w], is given by,

W2
2 (F,G,w) =

2δ2

(D∗ + 2)(D∗ + δ + 2)(2D∗ + δ +D∗2 +D∗δ)
(1)

The proof of Proposition 1 is provided in supplementary material. It shows
that the Wasserstein distance is less sensitive to the distribution shift if the
underlying intrinsic dimension is large. This means that, for a given shift, the
Wasserstein loss in visual space remains relatively lower than that in attribute
space, and therefore, in the case of Bi-VAEGAN [27], adversarial learning in
visual space is not as effective as attribute space. We, therefore, propose to use
only attribute space to learn pseudo-bidirectional alignment.

4 Methodology

4.1 Problem Formulation

Transductive ZSL aims to classify the unseen classes by accessing the unpaired
examples from the domain of unseen classes Du. We denote by Ds = {(x, y, ay)|x ∈
X s, y ∈ Ys, ay ∈ As} the domain of seen classes, where x is the visual feature,
y is the corresponding label and ay is the attribute of that category. Similarly,
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Du = {(x, u, au)|x ∈ X u, u ∈ Yu, au ∈ Au} is the set of unseen labels, and
A = As

⋃
Au. The model won’t have access to the labels for x ∈ X u. For gener-

alized setting, it is assumed that Ys∩Yu = Φ. Furthermore, fa and Da are used
to denote the visual-to-attribute mapper and the attribute critic, respectively.
Additionally, ψ ◦ fa assigns the label based on the cosine similarity between the
generated attribute vector and attribute from unseen domain. We denote by xug
the unseen generated visual feature vector. E and G are the encoders and de-
coders of the variational autoencoder, where G is a graph neural network. Let Ds

v

denote the visual critic for seen classes only. The goal is to develop a framework
to classify the examples from unseen classes correctly in both conventional and
generalized setting.

For theoretical analysis, we denote by ϵ(h, f) = E(x,a)∈D[1f(x)̸=h(x,a)] the ac-
tual risk and ϵ̂(h, f) = 1

|D|
∑

(x,a)∈D[1f(x)̸=h(x,a)] the empirical risk. dh∗(D1,D2)

and dH∆H(D1,D2) is the generative distance for optimal hypothesis h∗ and H∆H
distance [3], respectively. The details are discussed in supplementary material.

4.2 Overall Outline

Figure 1 shows the overall training pipeline of pseudo-bidirectional alignment.
The first stage involves training the visual-to-attribute mapper in adversarial
fashion for both seen and unseen classes. Subsequently, it is utilized for trans-
ferring knowledge to train the VAEGAN architecture to reduce domain shift
between true and generated visual features. Furthermore, it also exploits the
semantic relationship among the classes through graphical structure to adver-
sarially learn the visual features of unseen classes.

Visual-to-Attribute Mapping The first stage of training involves learning
attribute feature from the given visual feature for both seen and unseen classes.
It uses a simple multi-layer perceptron architecture which is trained in the su-
pervised fashion with adversarial regularization for seen classes. For the samples
from unseen classes, the model is trained only in adversarial fashion. Unlike Bi-
VAEGAN [27], the adversarial learning on both seen and unseen classes helps
the attribute critic to learn the interaction between their distributions. The op-
timization objective minimizes the L1 norm for the examples from Ds given
by,

Ls
fa = min

fa
max
Da

||fa(x)− ay||1 + λ1L
s
adv, (2)

where Ls
adv(As,Vs) = E[Da(a

s)]−E[Da(fa(x
s))]+(||∇âsE[Da(â

s)]||2−1)2 with
â = αas+(1−α)fa(xs). The objective for the unseen classes is similarly defined
as,

Lu
fa = Lu

adv =E[Da(a
u)]− E[Da(fa(x

u))]

+ (||∇âuE[Da(â
u)]||2 − 1)2,

(3)

where au ∼ Au. The critic training includes the gradient penalty term [8] to
induce better Lipschitz stability.
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Pseudo-Bidirectional Alignment for Attribute to Visual Mapping The
aim of training Expert-VAEGAN is to align the distributions of synthetic and
true visual features. It uses the visual critic Ds

v specifically to align the generated
seen visual features conditioned on their corresponding attribute features. Addi-
tionally, we use the visual-to-attribute map from the preceding stage as an expert
system to transfer the knowledge about the previously learned relationship be-
tween visual and attribute space for unseen categories. We call this approach
pseudo-bidirectional alignment because it tends to diversify only those compo-
nents of visual features that are necessary to discriminate them in attribute
space. To alleviate this issue, we re-utilize the visual-to-attribute mapper and
attribute critic together to minimize the distribution shift between generated
and true visual features. Since they have already been trained in preceding step,
they together serve as an expert through their learned mapping. Firstly for seen
categories, an encoder is explicitly used to learn the latent representations for
the visual features conditioned on their respective attribute space. For unseen
categories, we randomly sample the latent vector from a standard Gaussian dis-
tribution and stack them with a sampled attribute vector. The concatenated
attribute and latent vectors serve as the node embeddings for the graph with
the node connections defined by cosine similarity between the node attributes.
For two nodes with attributes ai and aj , the the weight of connecting edge is
defined as eij =

<ai,aj>
||ai||2||aj ||2 . The constructed graph is then passed to the first

order Chebyshev graph net (ChebNet) that computes the visual features corre-
sponding to each node. Since it leverages the Laplacian eigenbasis of the graph
to perform convolutions in the spectral domain, ChebNet captures both local
and global structural dependency effectively. This, in turn, allows to learn the
visual features based on their attribute similarity more effectively. Furthermore,
some of elements in the visual feature vector is randomly masked with zero while
training so to enhance the model’s ability to learn the intra-feature connections.

For training, we apply the VAE objective on the latent space vectors of the
seen classes as it is known to prevent the mode-collapse in GAN training. Fur-
thermore, we add L1 loss to minimize the reconstruction error of visual features,
and an adversarial regularization to align the synthetic and true visual features
distributions. Since the visual features can be paired with its attribute features,
the adversarial training aligns the learnt and true feature distribution condi-
tioned on the attribute space. The overall training objective for the seen classes
is given by,

Ls =min
E,G

max
Ds

v

Ezs∼E(xs,as)[KL(z
s||N (0, I))]+

Ezs∼E(xs,as)[||G(zs, as)− xs||1] + λ2Ls
Ds

v
,

(4)

where Ds
v = E[Ds

v(x
s, as)]− Ex̄s∼G [D

s
v(x̄

s, as)] + (||∇x̂sE[Ds
v(x̂

s, as)]||2 − 1)2.
For unseen examples, we directly utilize the attribute critic for adversarial

learning. In this case, the training can be formulated as,

Lu = min
G

max
Da

Ex̂u∼G [||fa(x̂u)− au||1] + λ3Lu
adv(G,Au), (5)
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where Lu
adv(G,Au) = E[Da(a

u)]−Ex̂u∼G [Da(fa(x̂
u))]+ (||∇āuE[Da(ā

u)]||2− 1)2

and ā = αau + (1− α)âu.
Here, λ2 and λ3 are the hyper-parameters. Equation 5 allows to align the

knowledge of the graph net with that of visual-to-attribute mapping. Instead
of strictly aligning visual features’ distribution for unseen labels, we utilize the
expert knowledge to learn the visual features discriminative enough to classify
them into correct categories.

Algorithm 1 Algorithm for pseudo-bidirectional alignment
X s,Ys, Xu, (Au,As), T1, T2 Trained G, E, fa, Ds

v, Da

for i in range (T1) do
Train the visual-to-attribute mapping transductively using equations 2 and 3.

end
for i in range (T2) do

Generate synthetic visual features x̂s for a sampled {xs,as}.
Train E and G for seen classes using equation 4.
Uniformly sample a batch of attributes au ∼ Au and z ∼ N (0, I).
Estimate the edge weights E = {eij} for ai, aj ∈ au.
Generate the corresponding synthetic visual feature x̂u ∼ G(z, au, E) and get
{x̂u,au}.
Train E and G for unseen classes using equation 5.
For training of classifier, generate a pair of true visual feature and its pseudo-label
{xu,ψ ◦ fa}.
Also, generate a pair of synthetic visual feature and original attribute vector
{x̂u,au}.
Train the classifier using the loss function 6.

end

4.3 Training the classifier

Since transductive setting allows access to unseen classes, it adds another degree
of freedom that we exploit in the loss function. It is to be noted that training
Expert-VAEGAN involves two modules that can assign a label to the visual
feature, one is visual-to-attribute mapping and the other one is the classifier
itself. To strengthen the alignment of their predictions, we apply entanglement
between true and learnt distributions in both visual and semantic space. For this,
we generate pseudo-labels from fa for the given true visual feature in addition
to the paired synthetic visual feature and the attribute vector. The combined
training objective for the classifier is given by,

Lcls = β[−Ex∼XuP (ψ ◦ fa|x; θ)] + (1− β)[−Ex̂∼GP (y|x̂; θ)], (6)

where P (y|x̂; θ) denotes the probability of assigning label y to the synthetic
feature x̂. Similarly, P (ψ ◦ fa|x; θ) is the probability of assigning the pseudo-
label ψ ◦ fa to the true features. The overall procedure for training is described
in the Algorithm 1.
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4.4 Theoretical Perspective

In this section, we provide theoretical arguments to support our claims on ad-
versarial robustness and confirmation bias.

Confirmation (or Uncertainty) Bias

Theorem 2. Let R and H denote the hypothesis space of classifier h and visual-
to-attribute regressor R, respectively. Without the loss of generality, lets assume
that for regressor R, ψ ◦ R assigns the label based on the similarity measure
between predicted attribute and unseen classes’ attributes. If optimal classifier
h∗ satisfies the condition: h∗ = argmin

h′
ϵ̂s(h

′, f)+ ϵ̂ug(h
′, f)+ ϵ̂u(h

′, ψ ◦R), Then

with probability 1− δ, following inequality holds for N number of samples,

ϵu(h, f) ≤ ϵ̂s(h, f) + dh∗(X ug,X u) + dR∗(X u,X s)+

dh∗(X u,X s) +
1

2
dH∆H(X u,X s) + ϵu(h

∗, f)

+ λ+

√
1

2N
log

2

δ
,

where λ = ϵs(h
∗, f) + ϵu(h

∗, ψ ◦R∗) + ϵug(h
∗, f)

We attempt to theoretically show that uncertainty or confirmation bias has detri-
mental impact on the overall performance. In transductive zero shot learning,
confirmation bias arises in two ways. Firstly, we assume that the synthetic visual
features belong to a particular class even though the generated feature may be
perturbed enough to change its category. Second, the confirmation bias may get
injected into the model through the conflict between the pseudo-label assigned
by visual-to-attribute mapping to the true visual features and label predicted by
the classifier. If the label predicted by the classifier and the pseudo-label assigned
by the mapper do not match with each other, the overall training may converge
to a sub-optimal solution. Theorem 2 shows that the loss function in 6 implicitly
adds a constraint of on R∗ and h∗ through ϵu(h

∗, ψ ◦ R∗). For prediction error
to reduce on the unseen labels, the labels assigned by both of them on a given
feature must agree. Additionally, dh∗(X ug,X u) constrains the distance between
the distributions of X ug and X u to reduce, and second, third and fourth terms
are constant for a given problem due to fixed domain shift between seen and
unseen classes.

Implicit Adversarial Robustness In self-training based methods, it is quite
common to apply label interpolation to improve adversarial robustness. How-
ever, [18] provides detailed analysis to contradict this assumption by showing
that interpolation in noisy labels is as large an adversarial risk as the poisoning
with similar noise rate.We, therefore, refrain from applying such interpolation
in our loss function. Instead, we now show that loss function 6 implicitly acts as
a weak upper bound on the robustness of the learned classifier. Our analysis for
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Method
Conventional Generalized

AWA2 CUB SUN AWA2 CUB SUN
S U H S U H S U H

I RGEN [31] 73.6 76.1 63.8 67.1 76.5 71.5 60.0 73.5 66.1 44.0 31.7 36.8
I APNet [12] 68.0 57.7 62.3 83.9 54.8 66.4 55.9 48.1 51.7 40.6 35.4 37.8
I FG [14] - - - 65.0 65.8 65.4 59.6 52.8 55.8 61.3 41.3 49.3
I LSG [32] 61.1 52.9 53.4 84.9 60.4 70.6 50.4 49.6 50.0 23.1 52.8 32.2
I Assym. Net [26] - 55.9 57.6 - - - 19.4 56.5 28.9 18.5 28.6 22.5
T DSRL [33] 72.8 56.8 48.7 - - - 25.0 17.7 20.7 39.0 17.3 24.0
T F-VAEGAN-D2 [30] - 71.1 70.1 - - - 65.1 61.4 63.2 41.9 60.6 49.6
T Zero-VAEGAN [6] 89.0 69.1 68.4 87.0 70.2 77.6 57.9 64.1 60.8 35.8 53.1 42.8
T ZSL-KG [16] 78.1 - - 84.4 66.8 74.6 - - - - - -
T DecGAN [15] - - - - - - 44.3 57.2 49.9 68.4 60.9 63.4
T Bi-VAEGAN [27] 95.8 76.8 74.2 91.0 76.1 90.4 71.7 71.2 71.5 45.4 66.8 54.1
T Ours 96.4 77.2 75.2 92.6 89.6 91.1 70.3 73.9 72.1 58.7 66.2 62.2

Table 1: Performance comparison with state-of-the-art in both conventional and
generalized ZSL. I and T refer to inductive and transductive settings, respec-
tively. In generalized ZSL, U and S indicate accuracies for unseen and seen labels,
respectively, and H is their harmonic mean. The best and second best results
are shown in red and blue, respectively.

robustness is based on two assumptions: (1) the generated samples already con-
tain adversarial noise, and therefore serves as adversarial examples [11], (2) We
follow [20,28] to use population consistency loss as the measure of robustness on
the unlabeled features from unseen classes. Based on this, we assume xug ∈ Bρ,
where Bρ(x) = {x′ : ||x′ − x|| ≤ ρ}. The population consistency loss is defined
as RB(h, x) = Ex∼D[1(∃ x′ ∈ Bρ(x) such that h(x) ̸= h(x′))].

Theorem 3. Let x ∼ Du and x′ be the true and the corresponding adversarial
features, respectively. Let R(x) maps the given visual feature x to its correspond-
ing semantic feature, and ψ◦R(x) produces corresponding label based on semantic
feature similarity. The population consistency loss RB is weakly bounded by,

RB ≤Ex′∼Bρ(x),x∼Du [1(h(x′) ̸= f(x))] + Ex∼Du [1(h(x) ̸= ψ ◦R(x))]+
Ex∼Du [1(ψ ◦R(x) ̸= f(x))],

(7)

In Theorem 3, the first two terms represent the loss function 6 provided we
treat the generated features as the adversarial examples. The bound is apparently
weaker in the initial phase of training since we have no prior information about
the labels of x for unseen categories, and therefore the third term cannot be
explicitly controlled. However, as the model begins to converge, the third term
approaches to zero and the bound eventually becomes tighter. In other words,
the proposed loss function provides weak guarantee of adversarial robustness.
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5 Experiments

In this section, we compare the performance with other state-of-the-art meth-
ods using benchmark datasets. Additionally, we provide empirical evidences to
support our theoretical analysis. We conduct our experiments on three datasets,
including AWA2 [29], CUB [25] and SUN [19]. The visual features of the images
are extracted using ResNet-101 pre-trained network. We analyse the performance
in both conventional and generalized setting by measuring overall accuracy for all
the unseen classes. The dataset and training details along with hyper-parameter
settings are provided in the supplementary material. In generalized setting, we
measure the accuracy for both seen (ACCs) and unseen classes (ACCu) and
express them using Harmonic mean given by H = 2ACCs×ACCu

ACCs+ACCu . Additionally,
We directly report the results from the published papers.

5.1 Performance Comparison

Since we utilize the graphical structure in VAE-GAN setup, We compare the per-
formance with VAE-GAN setups, including F-VAEGAN-D2 [30], Zero-VAEGAN
[6], DecGAN [15] and Field-Guided CADA-VAE [14], and graph based ap-
proaches such as RGEN [31], APNet [12], LSG [32], Asymmetric Graph Net-
work [26] and ZSL-KG [16]. Table 1 presents the comprehensive comparison to
the aforementioned state-of-the-art models. In Conventional setting, our method
achieves the best performance in in all three datasets. In generalized setting, our
approach achieves best performance in AWA2 and CUB, and second best in SUN
in terms of harmonic mean. We argue that our idea is still competitive for two
reasons. Firstly, most of the generative methods apply strong discriminability
on both visual and semantic spaces, whereas our model learns the features in
visual space by solely transferring knowledge to semantic space and leveraged it
to learn the discriminant visual features. This approach reduces the dependency
on additional discriminator and aids to training stability. Secondly, it can be ob-
served that the model does not overfit on the seen categories and maintains the
decent balance between the observed and unobserved samples. It is to be noted
that Field-Guided CADA-VAE [14] achieved second best accuracy on the seen
classes of SUN dataset at the cost of unseen ones, and therefore overfits on the
seen labels. Overall, the method achieved competitive performance by simply
exploiting the knowledge of expert to learn the distribution of visual features.

5.2 Ablation studies

In this section, we analyse several aspects of the method to study their impacts
on the overall accuracy of the classifier. We discuss the impact of visual feature
masking and how the loss function based on pseudo-labels contributes to reduce
the confirmation bias in the network, and we empirically verify the Theorem
2. Additionally, we evaluate its robustness against commonly used adversarial
attacks to validate Theorem 3.
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(a) FGSM in AWA2 (b) FGSM in SUN (c) FGSM in CUB

(d) PGD-20 in AWA2 (e) PGD-20 in SUN (f) PGD-20 in CUB

Fig. 2: Graphical comparison of performance under FGSM and PGD-20 attacks
on visual features for AWA2, SUN and CUB datasets.

Method
Zero Shot Learning Generalized Zero Shot Learning

AWA2 CUB SUN AWA2 CUB SUN
S U S U S U

Baseline 85.3 58.7 61.8 92.5 76.8 50.2 49.2 48.8 38.3
Baseline+masking-10 91.9 65.9 69.9 92.8 79.5 69.6 55.4 47.8 52.1
Baseline+masking-20 91.2 65.2 70.7 93.5 78.5 72.8 61.0 48.4 51.9

Baseline+masking-10+pseudolabel 96.4 77.2 75.2 92.6 89.6 70.3 73.9 58.7 62.2
Table 2: Performance comparison with Top-1 accuracy under various settings.
Masking-10/20 means that 10/20 random elements in the visual feature vector
are masked during training. Methods without pseudolabel setting only uses the
first term of loss function for training. Best results are shown in bold.

Feature Masking and Pseudo-labels The motivation to learn intra-class
feature dependencies is from Kong et. al. [10], which learns a new embedding
to enhance the separability between seen and unseen classes. Instead of adding
learning overhead, we mask some of the elements in feature elements randomly
and train the model over the masked feature vectors. Since the visual features ex-
tracted using ResNet-101 may also contain some redundant information, masking
lets the network explore the intra-feature relationships to extract the maximum
information and predict the correct attribute. Additionally, The graphical struc-
ture allows to share the knowledge and exploit the inter-class relationships. Table
2 shows a significant performance gain when a small fraction of visual features are
randomly masked. Moreover, there is no significant advantage when we increase
the number of masked features from 10 to 20. Therefore, all the experiments are
conducted with 10 masked elements in visual feature vector. The performance is
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further supplemented by reduced confirmation bias when trained with proposed
loss function. The empirical studies on the confirmation bias follows in the next
section.

Analysing the robustness We study the robust accuracy of our approach un-
der two adversarial attacks, including FGSM [7] and PGD-20 [13] attacks. For
this, the visual features are subjected to these attacks for different perturbation
budgets, and the accuracy of classifier is then observed to evaluate the robust-
ness. Figures 2 (a)-(c) and Figures 2 (d)-(f) compare the performances under
FGSM and PGD-20 attacks, respectively. It can be observed that the model
trained with loss function 6 outperforms by a relatively large margin supporting
our claims in Theorem 3.

(a) AWA2@β = 0 (b) SUN@β = 0 (c) AWA2@β = 0.5 (d) SUN@β = 0.5

Fig. 3: Comparison of categorical distribution learnt by classifier and visual-to-
attribute mapper when trained for β = {0.5, 0}

β 0 0.1 0.2 0.4 0.5 0.6 0.8 1
AwA2 52.7 94.8 94.0 95.1 96.4 94.9 94.3 91.1
SUN 71.3 71.1 71.7 72.2 75.2 69.2 68.8 64.9
CUB 65.8 70.2 70.6 71.2 77.2 72.7 71.9 62.2

Table 3: Top-1 accuracies on three datasets for different values of β. The best
results are obtained when both terms in the loss function are given equal weigh-
tage.

Mitigating Confirmation Bias To further support our claims on Theorem 2,
we ablate the value of β to show that minimizing both −Ex∼XuP (ψ ◦ fa|x; θ)]
and −Ex̂∼GP (y|x̂; θ) enhances the overall accuracy of the trained classifier. Ta-
ble 3 shows the accuracies of the classifier when trained with different values of
classifier. It is clearly evident that the overall performance increases significantly
when both losses are minimized with equal weightage. An intuitive explanation
is that when these losses are assigned unequal weights, one of the losses reduces
faster than other resulting in imbalance in their accuracy. Additionally, Figure
3 illustrates the histogram distribution of the labels predicted by the classi-
fier and visual-to-attribute mapper (fa). It can be observed that there is large
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disagreement between the classes assigned by fa and the classifier for a given vi-
sual feature. Such conditions result in higher uncertainty due to which classifier
converges to sub-optimal solution. Furthermore, the histogram distribution are
much better aligned for β = 0.5 showing consistency in the behaviour of both
modules.

6 Conclusions

In this work, we proposed an approach for transductive ZSL to tackle the mis-
match in intrinsic dimensionality during bidirectional domain alignment. In ad-
dition, we highlighted the confirmation or uncertainty bias that were prevalent
while training the classifier and compensated it through entangled loss function,
and then theoretically and empirically demonstrated the advantage of the pro-
posed loss function in terms of adversarial robustness. This approach results in
notable improvement in overall performance as compared to Bi-VAEGAN.
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7 Proof of Proposition 1

Definition 1. Let F : R+ ∪ 0 −→ R+ ∪ 0 be a function that is positive except at
F (0) = 0. We say that F is a smooth growth function if:

– There exists a value r > 0 such that F is monotonically increasing over
(0, r).

– F is continuous over [0, r).
– F is differentiable over (0, r).
– The local intrinsic dimensionality D∗

F exists and is positive.

Define Fw(t) =
F (t)
F (w) = P (X ≤ t|X ≤ w) for a random variable X and w > 0.

Definition 2. The Normalized 2-Wasserstein distance between F and G, con-
ditioned on [0, w], is defined as,

W2(F,G,w) =
1

w

(∫ 1

0

|F−1
w (u)−G−1

w |2du
) 1

2

(8)

Referring to [2],

W2
2 (F,G,w) =

1
2

D∗
F
+ 1

+
1

2
D∗

G
+ 1

− 2
1

D∗
F
+ 1

D∗
G
+ 1

(9)

Assume that D∗ is the intrinsic dimension of the true distribution P. Further-
more, we can assume that the intrinsic dimension of the learned distribution P ′

is D∗ + δ, where δ is the extent of error. Substituting them in 9, we get

W2
2 (F,G,w) =

2δ2

(D∗ + 2)(D∗ + δ + 2)(2D∗ + δ +D∗2 +D∗δ)
(10)

8 Proof of Theorem 2

Definition 3 (H∆Hdistance [3]). For two feature distributions Dg and Dr,
and the hypothesis class H, the H∆H distance is defined as,

dH∆H(Dg,Dr) = 2 sup
h,h′∈H

|Px∼Dg [h(x) ̸= h′(x)]− Px∼Dr [h(x) ̸= h′(x)]|

It can be rewritten in terms of actual risks as,

dH∆H(Dg,Dr) = 2 sup
h,h′∈H

|Px∼Dg
[h(x) ̸= h′(x)]− Px∼Dr

[h(x) ̸= h′(x)]|

≤ 2|Ex∼Dg [1(h(x) ̸= h∗(x))]− Ex∼Dr [1(h(x) ̸= h∗(x))]|
= 2|ϵg(h, h∗)− ϵr(h, h

∗)|

(11)

Furthermore, we refer h∗∆f -distance between Dg and Dr as dh∗(Dg,Dr).
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Lemma 1 (Mostafa et. al. [1]). For a fixed hypothesis, the actual risk ϵ(h, f)
can be estimated from the empirical one ϵ̂(h, f) for m samples with probability
1− δ,

ϵ(h, f) ≤ ϵ̂(h, f) +

√
1

2m
log

1

2δ
(12)

We use a following inequality to derive the proof.

|ϵD(h, f)− ϵD(h, h
∗)| = |Ex∼D1(f ̸= h)− Ex∼D1(h

∗ ̸= h)|
= |Ex∼D[(1(f ̸= h))− 1(h∗ ̸= h)]|
≤ Ex∼D[1(h

∗ ̸= f ] = ϵD(h
∗, f)

(13)

We now proceed to prove Theorem.

ϵu(h, f) =ϵs(h, f) + (ϵu(h
∗, f)− ϵug(h

∗, f)) + (ϵs(ψ ◦R∗, f)− ϵu(ψ ◦R∗, f))

+ (ϵu(h, f)− ϵu(h
∗, f)) + ϵug(h

∗, f)− ϵs(h, f) + ϵu(ψ ◦R∗, f)− ϵs(ψ ◦R∗, f)

≤ϵs(h, f) + |ϵu(h∗, f)− ϵug(h
∗, f)|+ |ϵs(ψ ◦R∗, f)− ϵu(ψ ◦R∗, f)|

+ |ϵu(h, f)− ϵu(h
∗, f)|+ ϵug(h

∗, f)− ϵs(h, f) + ϵu(ψ ◦R∗, f)− ϵs(ψ ◦R∗, f)

≤ϵs(h, f) + dh∗(Dug,Du) + dR∗(Du,Ds) + |ϵu(h, h∗)− ϵs(h, h
∗)|

+ |ϵs(h, h∗)− ϵs(h, f)|+ ϵug(h
∗, f) + ϵu(ψ ◦R∗, f)− ϵs(ψ ◦R∗, f)

≤ϵs(h, f) + dh∗(Dug,Du) + dR∗(Du,Ds) +
1

2
dH∆H(Ds,Du)

+ [ϵs(h
∗, f) + ϵug(h

∗, f) + ϵu(h
∗, ψ ◦R∗)] + |ϵs(ψ ◦R∗, f))− ϵu(ψ ◦R∗, h∗))|

− ϵs(ψ ◦R∗, f))

≤ϵs(h, f) + dh∗(Dug,Du) + dR∗(Du,Ds) +
1

2
dH∆H(Ds,Du) + λ

+ |ϵu(ψ ◦R∗, h∗)− ϵu(h
∗, ψ ◦R∗)| − ϵs(ψ ◦R∗, f)

≤ϵs(h, f) + dh∗(Dug,Du) + dR∗(Du,Ds) +
1

2
dH∆H(Ds,Du) + λ+ ϵu(h

∗, f)

≤ϵ̂s(h, f) + dh∗(Dug,Du) + dR∗(Du,Ds) +
1

2
dH∆H(Ds,Du) + λ+ ϵu(h

∗, f)

+

√
1

2m
log

1

2δ
(14)

9 Proof of Theorem 3

RB =Ex′∼Bρ,x∼D[1h(x) ̸= h(x′))]

=Ex′∼Bρ,x∼D[1(h(x) ̸= h(x′))]− Ex′∼Bρ,x∼D[1(h(x′) ̸= ψ ◦R(x))]
+ Ex′∼Bρ,x∼D[1(h(x′) ̸= ψ ◦R(x))]− Ex∼D[1(ψ ◦R(x) ̸= f(x))]

+ Ex∼D[1(ψ ◦R(x) ̸= f(x))]

≤|Ex′∼Bρ,x∼D[1(h(x) ̸= h(x′))]− Ex′∼Bρ,x∼D[1(h(x′) ̸= ψ ◦R(x))]|
+ |Ex′∼Bρ,x∼D[1(h(x′) ̸= ψ ◦R(x))]− Ex∼D[1(ψ ◦R(x) ̸= f(x))]|
+ Ex∼D[1(ψ ◦R(x) ̸= f(x))]

(15)
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RB ≤Ex∼Du [1(h(x) ̸= ψ ◦R(x))] + Ex′∼Bρ(x),x∼Du [1(h(x′) ̸= f(x))]

+ Ex∼Du [1(ψ ◦R(x) ̸= f(x))] + Ex∼D[1(ψ ◦R(x) ̸= f(x))]
(16)

10 Dataset Details

Dataset #samples Attribute size #X s #Xu

AWA-2 37,322 85 40 10
CUB 11,788 312 150 50
SUN 14,340 102 645 72
Table 4: Details of benchmark datasets

Hyper-parameters AWA-2 CUB SUN
Batch size 16 32 16
lr(classifier) 10−4 10−3 10−3

lr (fa) 10−3 10−3 10−3

lr (Expert-VAEGAN) 10−3 10−3 10−3

λ1 100 100 100 100
λ2 1000 1000 1000
λ3 100 100 100
β 0.5 0.5 0.5

Table 5: Hyper-parameter settings for the datasets. lr stands for learning rate.

We demonstrate the performance of our method on three publicly available bench-
mark datasets, including AWA-2, SUN and CUB. Animals with Attributes-2 (AWA-2)
contains total 37,322 samples belonging to 50 different classes. Each class is represented
attribute vector of dimension 85. Out of 50 classes, 40 of them are available as as seen
categories and rest of them are test labels. Caltech UCSD Bird (CUB) dataset contains
11,788 samples of 200 different bird species with attribute size of 312. The SUN scene
classification consists of 14,340 samples for 717 types of scenes and has attribute size
of 102. Details are also provided in table 4.

10.1 Implementation and training details

We perform our experiments in PyTorch 1.13 using Nvidia A100 GPU. For ChebNet, we
directly use Pytorch-geometric in the implementation. The hyper-parameters settings
for all three datasets are provided in Table 5. We use Adam optimizer to train the
models with β1 = 0.5 and β2 =0.99.
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