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Abstract

Diffusion models have demonstrated extensive capabil-
ities for generative modelling in both conditional and con-
ditional image synthesis tasks. Reverse sampling has been
the centre of interest to improve the overall image quality
without retraining the model from scratch. In this work,
we propose a plug-and-play module by utilizing the charac-
teristic function of the distributions to minimize sampling
drift. We experiment with existing diffusion solvers with our
module during the denoising step to provide additional per-
formance gain in image synthesis, linear inverse problem
tasks and text-conditioned image synthesis. Moreover, We
theoretically establish the method’s effectiveness in terms
of improved Fréchet Inception Distance (FID) and second-
order Tweedie moment for reduced trajectory deviation.

1. Introduction

Diffusion model [13, 24, 26] has emerged as a powerful
tool in image synthesis and solving inverse problems. Due
to their unprecedented success in high-fidelity image genera-
tion, they are widely used in various low-level vision tasks,
including super-resolution [11, 12, 16, 27], deblurring [4, 19],
computational tomography [25], and so on.

These generative models first add noise to the data, as a
part of the forward diffusion process, using Itô Stochastic
Differential Equation (SDE) dx = f(x, t)dt+ g(t)dw, and
then learns to predict the score function ∇x log pt(xt) from
the forward process at every timestep t. Multiple works have
tried to address various concerns in training [23, 28] and
sampling strategy [29,30] to improve the performance of the
model Despite these efforts, inaccurate estimates of score
function may lead to sampling drift resulting in convergence
to sub-optimal to data distribution. Though some efforts have
been made in Dara et al. [8], it requires retraining the model
from scratch with an improved training objective, which may
not be an ideal choice for large-scale models. To address

this problem of sub-optimal sampling without necessarily
retraining from scratch, our work focuses on generalized
moment matching of underlying probability density in score
function as a plug-and-play module in the existing methods.
For this, we propose characteristic function (ChF) match-
ing to minimize the sampling drift due to imperfect score
functions. We also theoretically prove that ChF matching
upper bounds the FID score. Moreover, we also show that
ChF matching implicitly incorporates higher-order Tweedie
moments in the sampling to help reduce sampling drift. We
enumerate the contribution of this work as follows:

1. We propose a plug-and-play characteristic function con-
sistency in the training and sampling stage to improve
the fidelity score of the generated score in both random
image generation and linear inverse problems.

2. We provide theoretical analysis to show that the pro-
posed approach is equivalent to second-order Tweedie
correction. We also prove that the proposed correc-
tion also reduces FID score and therefore, improves the
overall image fidelity.

3. We experimentally demonstrate that by introducing this
consistency, the overall performance of the existing
diffusion models can be significantly improved in terms
of FID and LPIPS scores.

2. Preliminary Background
In this section, we briefly discuss the concept of charac-

teristic function and principles of diffusion models before
describing our methodology.

2.1. Characteristic Function

For any random variable X that admits a probability dis-
tribution p(x), its characteristic function is the Fourier Trans-
form of the probability density function. the characteristic
function ϕ(u) : Rd −→ R is estimated by

ϕ(u) = E(eiu
TX) =

∫
Rd

eiu
Txp(x)dx (1)
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Figure 1. Geometric Illustration (Left): Due to imperfect score, the sampling drift may induce convergence of samples to a sub-optimal
distribution, which is depicted in terms of ChF curve. The ChF correction forces the distribution to stay closer to the expected distribution at
every time step. Image inversion (Right): CharDiff (with DPS) provides meaning reconstruction compared to DPS [6] alone. The jresults
are compared here for three inversion taks: motion deblur, 8 × super-resolution, box inpainting and random inpainting.

For a normal distribution with mean µ and variance σ, the
corresponding ChF is given by,

ϕ(u) = eiµu−
1
2σ

2u (2)

For a given finite number of samples {x1,x2,...,xn} from

Figure 2. Left: Estimation of four ChF coefficients with 5 data
samples. Right: Comparison of true probability density and
density computed using these four ChF coefficients

distribution X , the corresponding empirical characteristic
function ϕ̂(u) is computed as,

ϕ̂(u) =
1

n

n∑
j=1

eiu
Txj (3)

The motivation to utilize the ChF is that it is always defined,
since it is an integral of a bounded continuous function over
finite probability measure. Moreover, it is unique for a given
distribution. The probability density can therefore be esti-
mated from ChF by,

p(x) =
1

(2π)d

∫
ϕ(u)e−uTxdu, (4)

Subsequently, the squared characteristic function distance
[5, 7] is between two distributions is given by,

d2(X,Y) = Eu∼ω(u;η)[||ϕX(u)− ϕY (u)||2], (5)

where ω(u; η) is the weighing function parameterized by η
The idea of empirical characteristic function can be extended
to measure the Squared Empirical Characteristic Function
Distance to measure the distribution shift. For two given
distributions X and Y with empirical ChF ϕ̂X(u) and ϕ̂Y (u)
respectively, the corresponding distance is given by,

d̂2(X,Y) =
1

N

N∑
i=1

||ϕ̂X(ui)− ϕ̂Y (ui)||2 (6)

The probability density in 4 requires the knowledge of
ϕ(u) over the full range of u, which is practically intractable.
Fortunately, [1] shows that the magnitude of ϕ(u) decays
exponentially with the increase in the magnitude of u such
that ∥ϕ(u)∥ = O

(
1

1+|u|d2

)
. Consequently, we sample a finite

set of u close to 0 to estimate Eq. 6. Figure 2 shows that
that if very few ChF coefficients are sampled close to 0,
the underlying density function estimated using those few
coefficients remains closer to the true density function.

2.2. Diffusion Models

Diffusion models are primarily split in two categories,
score based model (SGM) and denoising diffusion models
(DDPM). In both of these approaches, target is to find p0 =
pdata in inversion or denoising step. Moreover, DDPM is a
discrete version of SGM, where time steps vary discretely in
[0,T]. To this, Gaussian noise is artificially added to the target
data at every time step t to get a new probability density pt
such pt −→ N (0, I) as t −→ ∞. In SGM, time-rescaled
Ornstein-Uhlenbeck process is commonly used Stochastic
Differential Equation (SDE) used for noise addition.

dxt = −1

2
β(t)xtdt+

√
β(t)dwt, x0 ∼ xdata (7)

The corresponding reverse sampling-SDE for the above



process is given by,

dx =
[1
2
β(t)x− β(t)∇x log pt(xt)]dt+

√
β(t)dw (8)

The forward process in DDPM [13] gradually adds Gaussian
noise to the data such that,

p(xt|x0) = N (xt;
√
ᾱtx, (1− ᾱt)I), (9)

where ᾱt =
∏t

s=1 αs, αt = 1−βt, where βt is the variance.
For the reverse process, the statext can be predicted with µ̂t

and σ̂t given by,

p(xt−1|xt,x0) = N (xt−1; µ̂t(xt,x0), σ̂
2I), (10)

where µ̂t = 1√
αt

(
xt − 1−αt

1−α̂t
ϵ
)

and σ̂2
t = 1−ᾱt−1

1−ᾱt
. Here,

ϵ ∼ (′, I.
For posterior sampling, ∇x log pt(xt) in 8 is replaced by

∇x log pt(xt|y), which can further be written as,

∇x log pt(xt|y) = ∇x log pt(xt) +∇x log pt(y|xt) (11)

Equation 8 involves two approximation to solve the re-
verse sampling equation. First, pT is unknown since it is
the noisy version of x ∼ pdata. It can be solved by as-
suming that there are sufficient number of steps in the dif-
fusion process such that pt ∼ N (0, I). Second, we also
have no knowledge about ∇x log pt(xt). It can be solved
by score matching technique [14], where we use a model
to approximate ∇x log pt(xt) using score function such that
sθ(xt, t) = ∇x log pt(xt).

3. Related Works
Characteristic Function: Being a powerful generaliza-

tion of probability measure, the characteristic function has
been a promising approach in the generative models. Ansari
et al. proposed OCFGAN [10] which formulated the learn-
ing of Implicit Generative Models in terms of characteris-
tic functions. It is particularly based on the framework of
MMD-GAN [2] by replacing the critic discrepancy mea-
sure using characteristic function loss. While this approach
marginally improves the performance, it extensively under-
mines the physical interpretation of ChF. Li et al. proposed
RCF-GAN [17] which interprets the meaning of real and
complex parts of ChF as a way to strike a balance between
diversity and accuracy. Though it experimentally validates
this idea, it does not provide any theoretical interpretation of
the claims. The application of ChF has not been studied for
the diffusion models yet. In addition to experimental valida-
tion, we provide a theoretical guarantee of the observations
so that it always holds for any class of datasets and models.
Inverse Problems: Diffusion models have set new bench-
marks among the generative models and are now used to

solve most of the inverse problems through methods like
diffusion posterior sampling. They operate in either pixel
space [13, 22] or latent space [20]. In pixel space diffu-
sion models, DPS [6] utilizes the approximated posterior
sampling in reverse sampling to solve noisy inverse prob-
lems. While ∇x log p(y|xt) is intractable, Chung et al. in
DPS provides an useful approximation which assumes that
p(y|xt) ≈ p(y|x̂ = E[x0|xt]). Rout et al. [21] proposed
PSLD, which extends DPS to solve general noisy inverse
problems by using orthogonal projection on the subspace of
the Transformation matrix in between encoding and decod-
ing steps to enforce fidelity.
Higher order Moments: The gradient of log-likelihood is
key to converging at data distribution. Many methods [3, 18]
explicitly estimate the Jacobian of score function or second-
order moment to reduce the bias in the imperfectly estimated
score function, which is a computationally expensive proce-
dure. Instead of directly solving for higher-order moments,
we prove that updating the sampling step with characteristic
function Distance is equivalent to second-order correction.

4. Methodology

4.1. Unconditional Image Synthesis

In unconditional image synthesis, the objective is to ran-
domly generate a sample from target data distribution from
Gaussian noise as the only input. For this, we study the
improvement using ChF in the context of both sampling and
training. Moreover, since ChF in diffusion model is time
dependent, we exchangably use ϕ(u, t) and ϕ(u).

Training: To train the model, we add additional ChF

Algorithm 1 Training DDPM with ChF correction
Require: u for sampling ϕ(u)
Find mean of the target distribution µ = Epdata

[x]
for i in range (N ) do

x0 ∼ q(x0)
t ∼ U(0, T )
xt ∼ N (

√
αix0,

√
1− αiI)

Take gradient descent step on,
∇θ||sθ(xt, t)−∇xt log p(xt|x0)||2 ▷ Score Matching
Loss
Choose ti|Ki=1 such that ti ∼ U(0, T )
Reverse-sample x̂t for ti ∈ t using sθ
Take the gradient step on ChF loss,
∇θ

∑
u || 1K

∑K
i=1 e

juT x̂ti − eju
Tαiµ−0.5uT (1−αi)Iu||2

▷ ChF Matching Loss
end

matching loss using Eq. 6 along with score matching loss
as shown in Algorithm 1. Given the finite numbers of u, we
can show that the upper bound on the MSE between true



Algorithm 2 Sampling DDPM with ChF correction
Require: Batch size B, Precalculated mean of the target
distribution µ = Epdata

[x]
xT ∼ N (0, I)
for t in T − 1 to 0, do

zt ∼ N (0, I) if t > 0 else z = 0
L =

∑
u || 1B

∑B
i=1 e

juT x̂ti − eju
Tµ−0.5uTσtu||2

x̂t = xt − γ∇xtL ▷ ChF Correction
xt−1 = 1√

αt

(
x̂t − 1−αt√

1−αt
sθ(xt, t)

)
+ σtz

end

score function and ChF based score function sθ is given by,√∫
||s(x, t)− sθ(x, t)||22p(x)dx = max

|u|
O
( 1

1 + |u|d
)

(12)
For a given normal distribution with mean and variance µ
and Σ, respectively, the corresponding ChF function is given
by ϕ(u) = eju

Tµ−0.5uTΣu. The ChF can serve two objec-
tives under certain assumptions. Firstly, it always minimizes
the distribution shift for the derived at every timestep and
therefore, helps converge to target data distribution. Second,
if we choose covariance matrix to be a diagonal matrix, as
shown in Proposition 1, then ChF loss is equivalent to mini-
mizing the shift between the time evolution of true ChF and
the given predicted ChF.

Proposition 1 Let ∂ϕ(u)
∂t be the rate of change of the char-

acteristic function ϕ(u) with time. If we choose the diffusion
term to be a scaled identity matrix, then for a given timestep
t, ∂ϕ(u)

∂t ∝ ϕ(u). Consequently, ||∂ϕ(u)
∂t − ∂ϕ̂(u)

∂t ||22 ∝
||ϕ(u)− ϕ̂(u)||22.

Sampling: Another alternative to generate sampling quality
is to suitably modify the sampling strategy without retraining
the model from scratch. Algorithm 2 illustrates the steps to
directly implement ChF correction just before denoising step.
If the resultant ChF the estimated xt deviates from the true
ChF, the gradient projection corrects it before denoising step
to minimize drift. It is to be observed that we need a certain
batch size to estimate empirical ChF. Experimentally, we
found that batch size of at least 12 is sufficient to accurately
estimate the ChF. Figure 1 illustrates the correction aided by
ChF consistency to ensure that samples remains closer to the
target distribution.

4.2. Inverse Problems

Given linear inverse problem y = Ax + n, where the
measurement y and linear operator A are known, the aim is
to find an estimate for x. Unlike retraining baseline diffusion
model from scratch for such complex tasks, we use ChF
correction as a plug-and-play module in the sampling stage

Algorithm 3 DPS sampling with ChF correction
Require: y, Number of steps T
xT ∼ N (0, I)
for t in T − 1 to 0, do

x̂0 = 1√
αt

(
xt + (1− αt)sθ(x, t)

)
z ∼ N (0, I)
Generate K no. of paired patches from xt and x̂0 given
by (xp

0,x
p
t )

L =
∑

u || 1K
∑K

i=1 e
juT x̂p

ti −eju
T√

αix̂0−0.5uTσtu||2 ▷
ChF correction
x′
t = xt − η∇xtL

x′
t−1 =

√
αt(1−αt)
1−αt

x′
t +

√
αt−1

1−αt
x0 + σtz

xt−1 = x′
t−1 − γ∇xt ||y −Ax̂0||2

end

of existing posterior sampling methods to further improve
the quality of resultant estimates. However, there are subtle
differences while using ChF correction for inverse problems
compared to unconditional image synthesis. Firstly, we do
not want to impose any batch size (to estimate empirical
ChF) during sampling. To solve this problem, we can divide
the sampled xt into small patches and treat them as the
independent samples to find ϕ̂(u). We can do this since
denoising step for each pixel in the image is independent of
other pixels. Secondly, we do not have access to posterior
mean to compute true ChF. Therefore, we directly use the
approximate posterior mean evaluated at every time step.

Remark 1 To compute true characteristic function at every
time step t, we use the approximate posterior mean given by
x̂0 ≈ 1√

αt

(
xt + (1− αt)sθ(x, t)

)
.

Proposition 2 Let xt and x′
t are the corresponding samples

in the forward diffusion and reverse sampling processes,
respectively such that ||xt − x′

t||22 ≤ ρ. The upper bound
on MSE loss between the ChF ϕ(u,x0) with true posterior
mean x0 and ChF ϕ(u, x̂0) using x̂0 as the posterior mean
is given by,

||ϕ(u,x0)−ϕ(u, x̂0)||2 ≤ ρ+κ||sθ(xt, t)−∇xt
log p(xt|x0)||22,

(13)

with probability of at least 1− 2e−
ρ2

4(1−αt) . Hre, κ = (1−
αt)

2||u||22.

Proposition 2 justifies our choice of approximating the
true posterior mean in Eq. 2 by x̂0. On the right hand
side, ρ is the squared L2 distance between forward and
reverse samples at time t, that is relatively small in suitable
trained model. The term κ involves squared L2 distance of
u, 1−αt < 1, and score matching loss. Since the sampled u
is close to 0, the overall second term is also bound to remain
closer to zero.



NCSN without ChF correction NCSN with ChF correction
NCSN without ChF correction NCSN with ChF correction

Figure 3. Left: Illustration of unconditional synthesis of CelebA faces with and without ChF correction. Right: Illustration of unconditional
synthesis of LSUN bedroom images with and without ChF correction.

Sampling Method Fashion MNIST CIFAR-10 CelebA LSUN-bedroom
FID FID IS FID NLL FID

DDPM 20.24 3.17 7.86 3.29 2.86 5.21
DDPM+ChF 19.25 2.56 8.21 3.01 2.76 4.89

DDIM 20.56 4.31 - 3.58 - 3.89
DDIM+ChF 19.42 4.14 - 3.16 - 3.26

NCSN 19.86* 25.32 8.87 8.21 - 38.92
NCSN+ChF 19.21 24.11 9.49 7.44 - 38.86

Table 1. Performance of diffusion model with and without ChF correction for three benchmark datasets on unconditional image synthesis
with NFE=1000. * indicates that these numbers have not been reported in the previous works and have been computed at our end.

5. Theoretical Analysis
Theorem 1 For two distributions P and Q, let D be the
diameter of the space supported by these two distributions.

Then with probability of at least 1− 2e
− δ2µ2

t
2σ2

t , The Frechet
Inception Distance between the samples at time step t from
these two distributions is upper bounded by,

FID(p, q) ≤ kEu[∥ϕP (u)− ϕQ(u)∥], (14)

where k =
32L2µ2

tδ
2

(2π)d
and L is the Lipschitz constant of

Inception Network.

Based on Theorem 1, we can infer that at every sampling
step, the ChF correction ensures that the underlying distri-
bution in the learned score function remains close to the
true distribution. Since every sample estimated at a given
time step t depends on the t+ 1, ChF correction minimizes
the propagation of sampling drift due to imperfect score and
therefore, the final sample at t = 0 converges closer to pdata.

Theorem 2 (Tweedie Sampler from ChF correction for In-
verse Problems) Let L = Eu[∥ϕ(u)−ϕ̂(u)∥22]. Let δdiscrete
be the discretization error between the forward and reverse
samples at every time step t. The gradient of the loss function
is given by,

∇xt
Eu[L] = A+ B(I−∇2

xt
log pθ), (15)

Figure 4. Left: Time Evolution of magnitude of Characteristic
function with and without ChF correction. Orange curve denotes
the magnitude of Original function, and Blue curve represents the
observed one. Right: Variation of FID score with Time steps.

where A = E
[
uT δdiscreteu

(
cos(u

Txt

2 ) − sin(u
Txt

2 )
)2]

and B = E
[
e−σ2

t ||u||
2
2uT δdiscreteu

(
cos(u

Tµt

2 ) −

sin(u
Tµt

2 )
)2]

.

Theorem 2 shows that gradient of ChF correction can be
expressed using the Hessian of log likelihood or gradient
of score function. This second order correction in Tweedie
estimator helps reduce bias towards ExT∼P (xT |xt)[xT ] and
tends to generate samples xT ∼ pT−t(xT |xt). This correc-
tion, in turn, improves the meaningful details in the recon-
structed samples.
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Figure 5. Qualitative comparison of diffusion models with different sampling methods.

Methods Inpaint (Random) SR x4 Gaussian Deblur Inpaint (box)
FID LPIPS FID LPIPS FID LPIPS FID LPIPS

DDRM 69.71 0.587 62.15 0.294 74.92 0.332 42.93 0.204
DPS 33.48 0.212 39.35 0.214 44.05 0.257 35.14 0.216
PSLD 21.34 0.096 34.28 0.201 41.53 0.221 43.11 0.167
Score-SDE 76.54 0.612 96.72 0.563 109.0 0.403 60.06 0.331
DPS+ChF 31.89 0.201 38.77 0.199 42.87 0.236 30.07 0.176
PSLD+ChF 20.67 0.204 32.87 0.146 40.26 0.216 41.97 0.159

Table 2. Quantitative comparison of different methods for various linear inverse problem tasks on FFHQ 256× 256 dataset.

6. Experiments

6.1. Experimental Setup

We evaluate our methodology for three different tasks,
including unconditional image synthesis, inverse problems
(super-resolution, inpainting, deblurring), and text-to-image
generation. For all these tasks, we present and compare the
results both quantitatively and qualitatively.
Quantitative metrics: Firstly, We use FID to evaluate the
sample quality for all the tasks. For unconditional synthe-
sis, we additionally use the Inception score and Negative
log-likelihood. For inverse problem tasks, we evaluate the
sample quality in terms of LPIPS due to access to the paired
ground truth.

6.2. Unconditional Image Synthesis

To evaluate our methodology, we experiment with
Fashion MNIST, CIFAR-10, CelebA and LSUN bedroom
datasets. We implement the ChF correction in the sampling
stage of DDPM, DDIM, and NCSN-v2. Unless specified,
the value of γ is always set to 0.1

t+1 for the time step t. Ta-
ble 1 presents the quantitative analyses for these datasets in
terms of Inception Score (IS), Frechet Inception Distance
(FID) and Negative Log-Likelihood Score (NLL). It is ev-
ident that the inclusion of ChF correction in the sampling
step drastically improves these numbers in most of the cases.
Additionally, Figure 1 depicts the sample quality for CelebA
and LSUN bedroom datasets for the NCSN model. We run
the sampling stage under a fixed global setting due to which
the given nosie converges to a particular sample in the dis-



tribution. For the CelebA dataset, we particularly observed
that ChF correction helps reduce the overall distortion in the
facial structure, whereas in the case of LSUN bedroom, it
enhances the diversity in the composition of the bedroom
images without introducing any significant distortion. Fig-
ure 4 further shows that in the absence of ChF correction,
the reverse sampling steps remain flattened in the beginning
indicating that there is no effective denoising taking place.
ChF correction reduces the effective flattening that results
in faster convergence towards data samples for CIFAR-10
datasets in DDIM.

6.3. Conditional Image Synthesis

Table 2 quantitatively compares the performance of ChF
correction with other methods, inlcuding DDRM [15], PSLD
[21], DPS [6] and Score-SDE [26], for FFHQ 256 × 256
dataset. It can be observed that ChF correction, when added
to DPS and PSLD, significantly improves the performance
in multiple linear inverse problem tasks. Figure 5 depicts
visual comparison of the samples, which shows that artifacts
in PSLD gets corrected through our approach. Similarly, the
quality of generated image also improves significantly for
both DPS and LDM.
Image Super-Resolution: To study the effectiveness of

Method 1000 600 400 200 50
DDRM x4 (DDRM) 0.304 0.306 0.296 0.298 0.330
SR x4 (DPS) 0.214 0.218 0.234 0.262 0.371
SR x4 (DPS+ChF) 0.199 0.206 0.213 0.238 0.317

Table 3. LPIPS score vs NFE for 4× super-resolution task on
FFHQ dataset.

Chf correction, we add the proposed module to DPS [6],
PSLD [21], and LDM [20]. It is sufficient to measure the
LPIPS score at different NFE to observe the convergence
of data sample. Table 3 shows that the LPIPS score for our
method is consistently lower than that of DDRM and DPS
alone. Larger steps sizes may introduce larger drift in the
characteristic function leading to poor sample quality. This
equivalently reflects in the FID score.
Image deblurring: We compared the results for Gaussian
deblur in Table 2 to show that ChF correction surpassed the
image quality scores with respect to other methods. Addi-
tionally, we present the quality metrics in Table 4 for motion
deblur with kernel size of 61 and intensity set to 0.5. We
note that the ChF correction surpasses the performance of
DPS by almost 23 % in terms of FID and and 32 % in terms
of LPIPS. Similarly, we observe drastic improvement of 19
% and 9% in terms of FID and LPIPS scores of PSLD re-
spectively.

Random Image Inpainting: Table 2 compares the re-
sults for (20 %, 80 %) uniform random drop in pixels in

Methods Motion Deblur
FID LPIPS

DPS 56.08 0.389
PSLD 51.02 0.292
DPS+ChF 42.92 0.306
PSLD+ChF 40.86 0.263

Table 4. Results comparison for Motion deblur problem.

Task DPS PSLD DPS+ChF PSLD+ChF
Box-96 25.62 32.19 22.36 31.69
Box-128 35.14 43.11 30.07 41.97
Box-160 51.06 53.18 48.26 50.91

Table 5. FID score for different methods under variable box sizes,
where N in Box-N is the size of box.

which we observe performance over both PSLD and DPS.
Following this experiment, we further investigate the varia-
tion in these scores with varying pixel drop rates. Figure 7
presents such variation in which we observe that ChF cor-
rection, when augmented with DPS and PSLD, consistently
maintains better LPIPS score for various extent of pixel
drops.
Box inpainting: We further study the approach in line by

experimenting with variable box sizes. Table 5 compares the
methods for various box sizes in terms of FID score. IT can
be clearly seen that ChF augmented sampling consistently
preforms better than DPS and PSLD.

6.4. Text-to-Image Generation

Apart from conditional and unconditional image genera-
tion, we also evaluate our method for text-to-image genera-
tion task. Following [20], we experiment with MS-COCO
captions dataset to generate 256 × 256 sized image using
the captions. We use LDM as the baseline with BERT as
the encoder network to generate text embeddings. The ChF
correction is added to the latent space sampling which is
sandwiched between an encoder and a decoder network. Ta-
ble 6 compares the performance for various text conditional
image synthesis among which ChF correction improves the
performance of the latent diffusion model in terms of FID.
However, we also observed a marginal decrease in the In-
ception score compared to LDM alone. The left-hand side
of Figure 7 illustrates the visual and semantic quality of the
text conditioned generated images. It can be observed that
ChF correction incorporates more meaningful features in
the image based on the given textual input. Similarly, on
the right-hand side, we additionally compare the image-to-
image translation tasks conditioned on user given prompt.



A baby holding a spoon looking at a cupcake and candle

A customized motorcycle with more in the background.

The telephone has a banana where the receiver should be

Pink coloured

confectionery

A light house

Reference LDM LDM+ChFPrompt

LDM LDM + ChF

Figure 6. Left: Illustration of Text-to-Image generation with and without ChF correction using Latent Diffusion Model. Right: Image-to-
Image Translation conditioned on the prompt.

Figure 7. LPIPS vs % pixel drop in random inpainting task.

Method FID IS Params
CogView [9] 27.10 18.20 4B
LAFITE [31] 26.94 26.02 75M
LDM-KL-8 23.31 20.03 1.45B
LDM-KL-8+ChF 22.16 19.20 1.45B

Table 6. Text conditional image synthesis results for MS-COCO
dataset for 250 DDIM steps.

7. Discussions and Conclusion

7.1. Limitations

We observed that ChF correction improved the sample
quality in different image generation tasks, including un-

conditional image synthesis, conditional image synthesis
and text-to-image generation. We noted that though our ap-
proach worked extremely well in pixel space sampling, it
appeared to lag in terms of performance in latent space sam-
pling. Moreover, we also observed that in certain cases, for
example changing initial random samples, it seemed to in-
troduce color imbalance in the generated during latent space
sampling.

7.2. Conclusions

In this work, we proposed a plug-and-play method for
improving sampling convergence in diffusion models. We
further showed its effectiveness by experimenting with var-
ious image-generation tasks. Moreover, we also provided
theoretical justification to the assumption and choice we
made in this work. As part of future work, it will be inter-
esting to further explore the aforementioned limitations in
addition to studying the adversarial robustness.
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